The Einstein - Dirac Equation on Riemannian SpinManifolds .

نویسنده

  • Eui Chul Kim
چکیده

We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational eld with an eigenspinor of the Dirac operator via the energy-momentum tensor. For this purpose we introduce a new eld equation generalizing the notion of Killing spinors. The solutions of this spinor eld equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einstein-Dirac equation and in dimension n = 3 the two equations essentially coincide. It turns out that any Sasakian manifold with Ricci tensor related in some special way to the metric tensor as well as to the contact structure admits a WK-spinor. This result is a consequence of the investigation of special spinor eld equations on Sasakian manifolds (Sasakian quasi-Killing spinors). Altogether, in odd dimensions a contact geometry generates a solution of the Einstein-Dirac equation. Moreover, we prove the existence of solutions of the Einstein-Dirac equations that are not WK-spinors in all dimensions n 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Existence Theorem for the Einstein-Dirac Equation

We study the Einstein-Dirac equation as well as the weak Killing equation on Riemannian spin manifolds with codimension one foliation. We prove that, for any manifold M admitting real Killing spinors (resp. parallel spinors), there exist warped product metrics η on M × R such that (M × R, η) admit Einstein spinors (resp. weak Killing spinors). To prove the result we split the Einstein-Dirac equ...

متن کامل

Solutions of the Einstein - Dirac Equation on Riemannian 3 - Manifolds with Constant Scalar Curvature

This paper contains a classification of all 3-dimensional manifolds with constant scalar curvature S 6= 0 that carry a non-trivial solution of the Einstein-Dirac equation. Subj. Class.: Differential Geometry. 1991 MSC: 53C25, 58G30

متن کامل

New Solutions of the Einstein-dirac Equation in Dimension

Consider a Riemannian spin manifold of dimension n ≥ 3 and denote by D the Dirac operator acting on spinor fields. A solution of the Einstein-Dirac equation is a spinor field ψ solving the equations Ric − 1 2 S · g = ± 1 4 T ψ , D(ψ) = λψ. Here S denotes the scalar curvature of the space, λ is a real constant and T ψ is the energy-momentum tensor of the spinor field ψ defined by the formula

متن کامل

The Einstein-dirac Equation on Riemannian Spin

We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational field with an eigenspinor of the Dirac operator via the energymomentum tensor. For this purpose we introduce a new field equation generalizing the notion of Killing spinors. The solutions of this spinor field equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einste...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999